Symplectic Structures— A New Approach to Geometry
نویسنده
چکیده
Introduction Symplectic geometry is the geometry of a closed skew-symmetric form. It turns out to be very different from the Riemannian geometry with which we are familiar. One important difference is that, although all its concepts are initially expressed in the smooth category (for example, in terms of differential forms), in some intrinsic way they do not involve derivatives. Thus symplectic geometry is essentially topological in nature. Indeed, one often talks about symplectic topology. Another important feature is that it is a 2-dimensional geometry that measures the area of complex curves instead of the length of real curves. The classical geometry over the complex numbers is Kähler geometry, the geometry of a complex manifold with a compatible Riemannian metric. This is a very rich geometry with a detailed local structure. In contrast, symplectic geometry is flabby, though as should become clear, not completely flabby—there are interesting elements of global structure. The comparison can be roughly stated as follows: { Kähler rich detail }
منابع مشابه
A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملA Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry
A novel discrete singular convolution (DSC) formulation is presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...
متن کاملCohomologically Symplectic Spaces: Toral Actions and the Gottlieb Group
Aspects of symplectic geometry are explored from a homotopical viewpoint. In particular, the question of whether or not a given toral action is Hamiltonian is shown to be independent of geometry. Rather, a new homotopical obstruction is described which detects when an action is Hamiltonian. This new entity, the AA-invariant, allows many results of symplectic geometry to be generalized to manifo...
متن کاملSymplectic field theory and its applications
Symplectic field theory (SFT) attempts to approach the theory of holomorphic curves in symplectic manifolds (also called Gromov-Witten theory) in the spirit of a topological field theory. This naturally leads to new algebraic structures which seems to have interesting applications and connections not only in symplectic geometry but also in other areas of mathematics, e.g. topology and integrabl...
متن کاملKähler-sasaki Geometry of Toric Symplectic Cones in Action-angle Coordinates
In the same way that a contact manifold determines and is determined by a symplectic cone, a Sasaki manifold determines and is determined by a suitable Kähler cone. KählerSasaki geometry is the geometry of these cones. This paper presents a symplectic action-angle coordinates approach to toric Kähler geometry and how it was recently generalized, by Burns-Guillemin-Lerman and Martelli-Sparks-Yau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998